
Dual processes in neural network models I. Neural dynamics versus dynamics of learning

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2577

(http://iopscience.iop.org/0305-4470/25/9/028)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) 2517-2592. Printed in the UK 

Dual processes in neural network models: I. Neural dynamics 
versus dynamics of learning 

A C C Coolent$§ and L G V M Lenderst 
t Department of Medical Physics and Biophysics, University of Nijmegen. Geert 
Grooteplein Noord 21, NL-6525 EZ Nijmegen, The Netherlands 
i Utrecht Biophysics Research Institute, University of Utrecht, Prineetonplein 5, NL-3584 
CC Utrecht, The Netherlands 

Received 21 August 1991 

Abstract. The dynamics of learning in an unsupervised formulation of the Kahonen model 
is shown to be equivalent to the dynamics of local order parameters in an attractor neural 
network with short-range Hebbian interactions and long-range anti-Hebbian interactions. 
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1. Introduction 

Neural networks can, in crude approximation, be viewed as stochastic spin systems 
with time-dependent interactions. The spins (or neurons) are fast variables, which are 
considered to be the information processing elements (varying on a time-scale of 
typically a few milliseconds). The interactions (or synapses) are slow variables, which 
are responsible for the distributed storage of both the 'program' of the system at hand 
and the 'data' to be recalled or processed (with a typical time-scale of at least a few 
hundred milliseconds). In this picture 'learning' is the process of modifying the spin 
interactions. There is a complicated interplay between the two types of dynamic 
variables. The spin dynamics is (at zero temperature) a local field alignment, involving 
the (generally long-range and non-symmetric) interactions. The exact laws governing 
the interaction dynamics, however, have not yet been determined. All that is known 
is that in biological neural networks they must have a local character: the modification 
of a given pair interaction may depend only on states, local fields and current interaction 
strengths of the two spins involved. Because of the different time-scale of the two 
dynamical processes in neural networks and of our lack of detailed knowledge of the 
rules involved in the dynamics of learning, the first step in statistical mechanical studies 
has been to study the two processes separately. 

Following the papers by Little [ l ]  and Hopfield [Z] many types of models have 
been studied in which the interactions are fixed and the spin states are the only degrees 
of freedom. The first systematic equilibrium statistical mechanical study of systems 
wiih fixed sy"eiric tiebbinn [;j irrieiacc;oits waj iaiiied by Am$ ci o/ [4-6j, 
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Extensions to more general symmetric non-Hebbian interaction matrices were 
developed in [71. If the interactions are non-symmetric, the local field alignment can 
no longer be written as a Glauber dynamics, and therefore equilibrium statistical 
mechanics is no longer applicable. In this case, however, one can often derive, from 
the microscopic dynamics, evolution equations for suitably defined order parameters 
[8-131. A detailed overview of the statistical mechanics of king spin neural networks 
can be found in textbooks such as [14-181. Following the work by Gardner [19] many 
physicists have now turned their attention towards the complementary problem: how 
to study analytically the process of learning if the statistics of the spins are given. This 
appears to be a completely different type of problem. Again the first step was to apply 
equilibrium statistical mechanics, which has given us insight into aspects of learning 
like information storage capacity [ 19,201, convergence times [21,22] and generalization 
[23]. Also the outcome of nonlinear learning processes like the perceptron could be 
calculated in some cases [24]. An attempt to study analytically the interplay between 
neural dynamics and the dynamics of learning was presented in [25]. 

We are now in a situation where the field of neural network theory appears to 
cover two distinct classes of problems: the analysis of neural dynamics in systems with 
fixed interactions (class A) and the analysis of the dynamics of learning in systems 
where the spin statistics are given (class B). It is the purpose of this paper to show 
that there are non-trivial problems in class B which can be mapped onto problems in 
class A (about which much more is known). In particular we will set up a duality 
between the dynamics of interactions in an unsupervised formulation of the Kohonen 
[26,27] model and the dynamics of local order parameters in attractor networks with 
(fixed) short-range Hebbian interactions in combination with (fixed) long-range anti- 
Hebbian interactions. 

This paper is organized as follows. In section 2 we derive the evolution equations 
of local order parameters in attractor networks with spatial structure and interactions 
of both the Hebbian and anti-Hebbian type (which is a generalization of [28,29]). In 
section 3 we show how the very same field equations describe the evolution of 
interactions (and thus the creation of topology conserving maps) in an unsupervised 
formulation of the Kohonen [26,27] model. We present some numerical results describ- 
ing the creation of topology conserving maps. In section 4 the field equations are 

which, in equilibrium, can be identified with the free energy. We derive some of the 
constraints that must be imposed upon the spatial structure of the attractor network. 
An intensive study of the fixed-point equations is considered to be beyond the scope 
of this paper and will be published in a forthcoming paper. Finally we discuss the 
results obtained. Appendix B contains an overview of the notation introduced and a 
brief description of the main variables. 
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2. king spin neural networks with spatial structure 

In this section we derive evolution equations for local order parameters in king spin 
neural networks with spatial structure and fixed neural interactions. We start with a 
network of N neurons, each of which can be in two states, s, = f l ,  i = 1 , .  . . , N. The 
N-neuron network state will be written as s. A finite number of N-component vectors 
tW ( p  = 1 , .  . , , p )  represent the information which is built in using Hebbian rules [3] 
and which determines the connection matrix .I, for the effect of neuron j on neuron 
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i by 

Here we have denoted by S, the set of neurons which can send a signal to neuron i. 
The variables ug E {-1, 1) indicate the type of the interactions: J,  is Hebbian if a, = 1, J, 
is anti-Hebbian if uq = -1. S is the average number of neurons contributing to an 
input, i.e. S =  l / N Z j  I.Sl, where 151 is the number of neurons in the set S;. If, 
furthermore, the components are drawn from the set {-1, l}, then the vectors tP 
are by definition microscopic network states and can be thought of as patterns. 
Throughout this paper, however, we will impose no restrictions on the values of the 
components 5:. Note that the interaction matrix (1) need not be symmetric; its symmetry 
properties still depend on the choice made for the sets S, and the variables U,. 

As in statistical mechanics we will consider an ensemble of states, so we can speak 
about the probability p,(s) of finding the system at time t in the state s. The evolution 
of this probability is now assumed to be governed by a stochastic process, in which 
the probability per unit time for neuron j to flip from sj to -s; is some given function 
of the total state s, which will be denoted by wj(s). The master equation for this process 
i: 

~- dp*(s)-Z: w,(F,s)p,(F,s)-p,(s) 1 w;(s) 
dt ; 

where F, is an operator, defined by 

F,@(s, ,..., s,, ..., S N ) = @ ( S , ,  ..., --s ,”. . , S N ) .  

w,(s) = ;[ 1 - tanh(ps,h,(s))] 

For w,(s) we make the usual choice 

(3) 

where p = 1/T (the ‘temperature’ T being a measure of the amount of noise) and the 
input h,(s)  (or local field) acting upon neuron j is 

In general it will be impossible to find the solution of equation (2). However, as in 
statistical mechanics, we are not interested in the microscopic details of a network 
state, but rather in the question of whether the values of certain macroscopic features 
can be calculated. In appendix A we analyse the evolution in time of any set of linear 
order parameters R,: 

n,(s) = 1 w:’)s; ( p =  1 , .  . ., n ) .  ( 5 )  

For the case in which the local fields h , ( s )  depend on s, only through the values of 
the order parameters, h,(s) = h , [ n ( s ) ] ,  and if the number n of order parameters is not 
too large, we find deterministic evolution equations for the order parameters in the 
limit N + 00: 
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Here we have assumed mi')= O(l VJ') for all i, p (in order to have well defined order 
parameters in the limit N +  00). The support V, of Cl* is defined as V, ={i[w{*) # 0}, I V,l 
being the number of elements in V, (for simplicity we take all 1 V,l to be of the same 
order in N, i.e. 3 V :  limN,,IV,l/V=O(l). The restriction on the number of order 
parameters is 
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A special case of a set of order parameters satisfying all these requirements will now 
he considered. 

In order to  describe the macroscopic dynamical behaviour of a network with a 
given spatial structure, as given by ( l ) ,  we divide the system into a large number of 
non-overlapping clusters A = 1,2,. . . , A of adjacent neurons. The indices of the neurons 
in cluster A form the set I , ,  which contains II,l= N / A x  1 indices. We now define 
rnaL.ruJLuyrc ".mld"LC-S uy :-t.,-- L.. 

A macroscopic state is now defined by the vector Q = (9, I , .  . . , Q,,,), where each QA, 
ranges between -1 and 1. In order to show that the inputs h,(s) can also he considered 
as a function of Q(s), we write Pies, in equation (4) as L,~ZjeDIA., where D,&. is the 
intersection of S, and I,. (see figure 1). Then we obtain 

If S is taken to he suficiently large (i.e. S > - N / A )  and if on the cluster scale the 
connections are of uniform type (i.e. qj = uAA, for all j c  I A ,  ie IA,) it is seen from the 
definition (8) that 

In the limit N + m  this becomes an equality (if S, is chosen such that the boundaries 
8% coincide with the boundaries of the sets In, then the equality holds without any 

Figure I .  The partitioning of the sum over all contributions to the input of neuron j :  D,A, 
denotes the intersection ofclusler A'and the set S, of all neurons contributing to this input. 
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restriction on S).  Equation (6) can now be used to describe the evolution in time of 
Q. However, in order to simplify the final result we will also assume that for all 
i, j E I,: IDu,] = IDjA,I = IDi,,[ for all A' (put differently: the interaction density is assumed 
to be constant on the cluster scale). This allows us to define 

n(A,  A') = oAA,IDA,.JS-' 

In(A, A')I is the density of connections from IA, ,  to any neuron in I,. By definition it 
is normalized according to 

Since equation (6 )  can now be applied to the order parameters QA, we can write for 
N+m(usingII , I=N/A):  

Finally we take a continuum limit and replace the cluster labels A and A '  by the 
continuous position vectors x and y ( x , y ~  D ) ;  for QAF( 1 )  we write q,,(x, 1 ) .  By taking 
this limit, equation (9) becomes 

with q(x ,  0) = q o ( x )  ~- f)-A(x,q)-q(x, t )  
ar 

where 

I/ and q, A and c(x) are p-dimensional vectors. The average ()e(xl is computed over the 
distribution of the vectors (61,. . . , 67) at position x; it therefore depends on their 
specific realization. The function n ( x ,  y ) contains all information regarding the 
network's structure: In(x,y)l is the density of connections from position y to position 
x,sgn[n(x,y)] indicates the type (sgn= 1: Hebbian, sgn=-1: anti-Hebhian). The 
structure function n is (by definition) normalized according to 

We assumed p to be fixed. The number n of order parameters in (9) is p A .  The size 
V of their supports is N/A. In order to write local inputs as functions of Q we have 
assumed S >> N/A; according to (7) the conditions under which equations (10) and 
(11) will hold are therefore found to be 

A' 
lim - = 0. 
N-m N 

N 

One might choose A =  N' and S= N', such that O <  E <$ and 1 - -E  < ?< 1. 
If the components 6; do not vary within the clusters I*, equation (11) reduces to 

A b ,  q )  = 5(x) tanh P (c(x) . j D  dy n ( x ,  y)q(y, r)) 
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In this case we can make a decomposition: q(x,  f )  = q(x ,  f ) . $ ( x ) + q l ( x ,  I) ,  where 
q’(x, 1 ) .  .$(x) = 0. It then follows from (IO) that 

q Y x ,  1) = q’(x, 0) e-‘ 

A C C Coolen and L G V M Lenders 

- d + r ) = f a n h ( B [  J dyA(x,y)q(y,r))-q(+f! 
d f  

where A(x;y)= n ( x ;  y).$(x) . .$(y) and q(x ,  t )  turns out to be the average activity (or 
magnetization) at position x at time 1. if, on the other hand, the vectors .p are drawn 
independently at each position x (from a given distribution p( .$ ) ) ,  then 

It is important to stress that there are no further restrictions on the distribution p ( g ) .  
On!y if a!! 6; zre drp:.:n fra- !be set {-:,!I cax we think ix ?e:=; of pa~ems being 
stored; applications of equations (10) and (11) where input vectors correspond to 
patterns can be found in [29]. If, however, the vectors 6 have components which are 
not restricted to a discrete set, the picture of stored patterns might have to be abandoned. 

3. The dual process: creation of topology conserving maps 

In this section we will define an unsupervised form of the Kohonen model [26,27] 
for the creation of topology conserving maps. In this two-layer system the dynamic 
quantities are the neural interactions. In an input layer, consisting of p real-valued 
neurons, input vectors s are presented in random order (drawn from a given probability 
distribution). These vectors are taken to be normalized: JsJ = 1 for all s. The second 
iayer consists of a (usually ZD) array of neurons, which receive signais hi from the 
input layer: 

hi =I J..s.. E, I (14) 
1 

A set B; of neighbours is associated with each neuron i in the second layer ( i  E Bi). 
The interactions J ,  between the two layers evolve in time according to the following 
stochastic procedure: 

(i) choose at random an input vector s; 
(ii) determine k such that hk 3 hi for all i; 
(iii) V I E B ~ : A J ~ = E S ~  (forall j) ( O < E < <  I ) ;  
(iv) V I € & :  J t + J o ( X , , , J ~ J ” *  (for a l l j ) ;  
(v) return to (i). 
As was shown by Kohonen [26,27], the net result of this procedure is that the 

neurons in the second layer tend to  become ‘feature detectors’ (tuned to one specific 
input vector). Furthermore, because of the incorporation of the sets Bk in the updating 
procedure, neighbouring neurons are forced to detect similar features. If the set of 
input vectors from which the examples are drawn is topologically equivalent to the 
physical array of the second layer, an internal representation will be formed of the set 
of input veciors. in this case one can associaie wiih each inpui vecioi a posiiiun on 
the array, such that presentation of this input vector causes an activity peak in the 
array exactly at this position. The mapping from the set of input vectors to the positions 
of the corresponding activity peaks in the array is topology conserving [26,27]. From 
now on we will refer to the second layer as the map (in accordance with the literature). 
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From a physiological point of view the Kohonen model has some unattractive 
features. Firstly, a supervisor is needed to determine which neuron is activated most 
upon presentation of an input vector. Secondly, connections are normalized by hand. 
From a theoretical point of view the problem with Kohonen's model is that the 
interaction dynamics is extremely discontinuous, which makes analysis rather difficult. 

As an alternative we propose the following. First we replace the normalization step 
by a decay; the modification step now reads 

I 

( V m J :  AJm, = ~ ( ~ , f ~ [ h ( ~ ) l -  Jm,) 

where 

f , ( h )  = 1 

f m ( h )  = 0 

if m E Bko, 

if m e  Bk(nj 

k ( h )  is defined as 

( V I #  k ) :  hk> h,. 

The function offm is twofold: firstly, through the introduction of the sets Bk(h) a local 
convolution is introduced that ensures neighbouring neurons modify their weights in 
approximately the same way; secondly, f, introduces nonlinearity into the weight 
dynamics. In orderto arrive at a continuous dynamical law we will make the replacement 

Here f is a monotonic nonlinear function to be specified ( f ' ( x ) z O ) ;  n,, defines a 
local convolution which monotonically decreases as a function of the distance between 
the physical locations x, and x, of the neurons m and 1 in the array. Now all neurons 
update their interactions, nonlinearly weighted by the strength of their (convoluted) 
inputs. The system's dynamics is now given by: 

(i) choose at random an input vector s; 
(ii) Vi, j: AJg = e ( s j f [ X k  n i k h J - J V )  (O< e<< 1); 
(iii) return to (i). 

By taking the limit E +O we obtain 

The average in (15) is defined over the probability distribution of the input vectors. 
To establish contact with the laws governing the dynamics of order parameters in the 
model of section 2, we need only make the choice f ( x )  = tanh(px), take a continuum 
limit and switch notation: i + x , j + I r , s + S , n j l + n ( x , y )  and J V ( I ) + J + ( x , I )  (now 
J,,(x, 1 )  represents the interaction strength at time 1 from input channel p to position 
x in the map). The result is 

(16) __- I ) -  ( e  tanh p (e. I, dyn(x, y)J(y, I ) ) )  - J ( x ,  1 ) .  
J t  f 

If we identify the convolution kernel n with the structure function n of the attractor 
network and if we also identify the nonlinearity parameter p with the inverse tem- 
perature in the attractor network, equation (16) shows that the laws governing the 
processes in sections 2 and 3 are exactly the same. Table 1 shows an overview of this 
duality. 
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Table 1. The duality between the dynamics of interactiocs in topology conserving maps 
and the dynamics of local order parameters in suitably defined attractor networks. 

1 
J,L(x,  f)=;y”_~; 5::tanh(P&. [ dyn(+y)*(y, I , )  -#*k I )  

Topology conserving maps Attractor networks 
(dynamic interactions in a layered 
network) recurrent network) 

(dynamic neurons in a 

#,.(x, I )  

n(r,y) Convolution in the map Structure function 
5: 

N Number of input examples Number of neurons 
P Number of input channels Number ai stored venors 
P Nonlinearity parameter Noise parameter 

Interaction from input channel f i  to 
position 1 in the map 

ith sample from fith input channel 

Value of pth local order 
parameter 

ith component of fith stored 
vector 

A number of assumptions have been made in section 2 in order to demonstrate the 
equivalence between the processes in sections 2 and 3 (apart from the definitions of 
the microscopic dynamical laws and the Hebbian-type interaction matrix). The assump- 
tions that are essential for having deterministic evolution of order parameters in the 
attractor model (in the thermodynamic limit) are the scaling requirements 

N f A S + O  and A ’ f N + O  (for N --f m). 

If these requirements were to be violated, we would be forced to take into account 
the fluctuations in the values of the order parameters. The remaining assumptions 
made in section 2, such as 

( V i j ~  I ~ ) ( V A ’ ) :  Ir,.nS,I = Iln.nSjl 

are restrictions on the smoothness of the spatial density of interactions (introduced 
for computational convenience), which might be eliminated. 

The formation of topology conserving maps by a process similar to (16) has already 
been advocated by Amari [30]. Whether or not equation (16) describes the creation 
of topology conserving maps will depend on the choice made for the convolution 
kernel n and for the parameter T =  p-‘. We will show that n needs to be positive at 
a short range and negative at a long range (in accordance with a proposal in [26,27]). 
This is the reason why the derivation in section 2 had to include both Hebbian and 
anti-Hebbian interactions, for in terms of the attractor model the above-mentioned 
restriction on the allowed convolution kernels implies that the dual attractor network 
has short-range Hebbian interactions in combination with long-range anti-Hebbian 
interactions. Figure 2 shows the result of a numerical iteration of equation (16) (starting 
from a random initial configuration J ( x ,  O)), with p = 3, T = 0.0, X E  D- [-$, $1’ and n 
chosen to be 

n(x,y)?(2?ru2)-1 e - 1 4 / 2 ~ * - 1 ,  

The width U was taken to be 0.01. Since a system configuration J ( x )  in this case is a 
mapping from the square [-;,$I’ onto R3, we choose (following Kohonen [26,27]) as 
a graphical representation of the equilibrium configuration the projections of J ( x ,  00) 
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The field equations we arrived at in the previous sections are of the form 

a,+ = (6  tanh(P5. nO QDZ - + I 
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t '  
0.5 ~ 

0 -  

_" E 

"'* t 
-0.5 0 0.5 -0 .5  0 0.5 -0.5 0 0.5 

Figure 2. Projections of the  equilibrium configuration J(x ,  m) onto the planes J ,  = 0 (left), 
J>=O (middle) and J,=O (right), obtained by numerical iteration of the interaction 
dynamics. 

onto the planes J ,  = 0, J2 = 0 and J,  = 0. The distribution of input vectors in this example 
was chosen to be 

Figure 2 shows that an internal representation is formed of the orientations oi the 
input set. 

( @ ( 6 ) ) 6 -  J d5&)@(6) 

(where (.f2)# i 00). To simplify our notation we will write spatial averages over D as 

First we show that the fields $I will remain bounded, by writing the solution of (17) 
in the form 

+(x, I ) =  e-'+(5r&, f ) ) t  

d,y, =tanh(PS. nO& e- '+PS. nO(6'r&-vt 

Y&, 0) = 0 

(18) 

for all &. 
Clearly yf(x, f )  E ( - I , ] )  (for all x, 1 ) .  which implies that the fields Q will remain 
bounded. Throughout the rest of this paper we will assume that n is a compact 
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symmetric operator with non-negative eigenvalues A;. As a consequence we can identify 
a Liapunov functional F: 

(19) 

A C C Coolen and L G V M Lenders 

FE+] -;f(+' n @ + ) o  -8-'((log(2 cosMP6. n @  +])))SO 
since 

If n is positive definite (d/dt)F[+] = O  implies that + is a fixed point. If, on the other 
hand, n has zero eigenvalues (d /df )F[+l  = O  implies that nO+ no longer varies with 
time; according to (17) the system will now decay exponentially towards a fixed point. 
The functional F has a lower bound, since 

F[+la -P-'((lOg(2 cosh[P6. n@+l)))fD 

>-(16' n @ # l ) ) f D  

a -AmaX(l6l)s(+')g'. 

Here A,,,,, is the largest eigenvalue of the operator n. In equilibrium the functional F 
can be interpreted as the (rescaled) free energy of the attractor network in section 2, 
for which the (rescaled) Hamiltonian is given by 

(SO) _ _  n = - L  ;(@. n @ @ ) o .  

For a microscopic realization s (corresponding to a macroscopic state +) to exist in 
the attractor network of section 2, the possible values of the fields will have to be 
restricted (according to (8)) to 

( V X E D )  (3~t(x)E[- - l ,  11): +(x) =(6Y&-Nf 

which, if not true at f = 0, will certainly be true near equilibrium (according to (18)). 
In equilibrium we can write F = H - TS, with 

S[+l=((S(Pt.  n@+)))*Ll S(x)-logZ+logcosh(x)-x tanh(x). (21) 
Since S(x) E (0, log 21 the quantity S[ +] may be interpreted as a rescaled entropy. If 
we choose n ( x ,  y )  to be a positive constant, expression (19) reduces to the free energy 
Der neuron of the fully connected model as derived in 141. 

Next we turn to the temperature dependence of equation (17). Since (62)S is finite 
the covariance matrix C,, - (.$,..$.)e is well defined (with eigenvalues c,, f [0, cmax]), 
which allows us to calculate an upper bound for the critical temperature T,. For T >  T, 
the only equilibrium solution of (17) is the trivial state +(x) =O; for T <  T, there are 
non-trivial fixed-point solutions of (17). The operator n is again taken to be symmetric 
and semipositive definite, to ensure that a fixed point will be reached. First we rewrite 
the fixed-point equation: 

4 =nO(5tanh[P5.41)s  q i = n @ + .  (22) 

Equation (22) can also be written as 

Using the symmetry of n, it now follows that for a fixed point of (17) 
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In terms of *this means 

($. (n@* -pCn2@ s 0. (23) 

On the other hand we know that if T >  c,,,h,,, 

($. ( n @ + - P C n 2 @ + ) ) u  min A,[ l  -pc,Ai] 3 0 .  (24) 
i r r  

Here cmex is the largest eigenvalue of the covariance matrix C and A,,, is the largest 
eigenvalue of the operator n. Combining the two inequalities (23) and (24) shows that 
the left-hand side of (23) and (24) equals zero as soon as T >  c,.,A,,, . This, in turn 
(in combination with T >  C , ~ ~ A , ~ J  implies =O. At Tc= c,,,A,,. the system under- 
goes a second-order phase transition, which can be seen after expanding the solution + of the fixed-point equation in powers of E - p  - p C :  

(25) = * o E  112 + 9, E + ~ r ~ ~ ~ / ~  + o( E 2 ) .  

The result of substituting this expansion into the fixed-point equation of (17) is 

~@*o=&,"*o c*o = C,..*" 

nQrL1=A,&, c*,= C,,,SI 

*2 = ~.cnO*~+~c'*~-fcm:~(C(S.  ~ r ~ ) ' ) ~  

from which we can deduce 

($3, =fP.cl,(((S. *d4))ue. ( 2 6 )  

Using (26) we can express the rescaled free energy F in terms of the expansion (25): 

T>T, :  F = - T l o g 2  

T <  T,: F =  - ~ i o g 2 - : ( ~  - p . ) 2 p c l ~ , ~ ~ ( * l 3 + 0 ( p - p ~ ) 5 1 2 .  

The non-trivial solutions of the fixed-point equations which bifurcate at T =  T, are 
eigenfunctions of n and C, corresponding to the eigenvalues A,,, and c,,,, respectively 
(since n and C commute). 

Finally, we will address the problem of what restrictions are to be imposed on the 
allowed functions n(x,y). In order to arrive at topology conserving maps in which the 
structure is not influenced by arbitrary properties of n, a natural choice is to take for 
n a translation invariant kernel: n ( x ,  y ) =  n(lx-yl). Since fixed-point solutions of (17) 
are required to be highly correlated at short distances the function n ( r )  must obey: 

the ground state (according to (20)) would be a configuration where, away from the 
boundary aD, JI would be a constant. The above-mentioned considerations naturally 
lead to the choice 

@)>O, x'(z)<cfcra!! z. !fX(Z)x:/ere!obe positl:.e fora!! Z ~ ~ a X ( I + - . . . I \  Y l l  I.. \* ,Y ..r = -1,  "\ 

n(lX-yl)= ~ + ( l x - y l ) - . W ~ '  

nJ0) > 0 n ; ( z ) < 0  2-m l im n + ( z )  = 0 (27) 

O<JcJ*=IDl- l  1, dxdyn+(lx-yl). 
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The reason for the extra restriction J S I* is that for J > J* the operator R will certainly 
have negative eigenvalues, since 
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Amt.=min I D  I I dxdyf(x) / (y)n( lx-yl)(I  D dxf’(x))-‘ 

Since the choice (27) implies allowing for an infinite range of the inhibitory interactions 
in the Kohonen map (or for an infinite range in the attractor model of section 2, 
respectively), a more natural choice might be to choose for the shape of the interaction 
kernel a ‘Mexican hat’-type function such as 

n ( l x - y l ) =  n+(l~-yl)-J(2?rI*)-~’* e ~ p [ - f ( x - y ) ~ / X ~ ]  

(where d =dim x). The calculational disadvantage of the latter choice is clearly that 
for finite X and J > 0 the interaction kernel will no longer be positive semidefinite, 
which implies that the function F (19) will no longer be a Liapunov function. However, 
in the limit T = 0 the Hamiltonian H is itself a Liapunov function for all symmetric 
choices of the interaction kernel n, whatever the eigenvalue spectrum. Therefore, the 
analysis of the zero temperature limit of the dynamic equations (17), presented in [31], 
can in principle be extended to the case of having interaction kernels with negative 
eigenvalues (such as the one above). Physically one expects that choosing ‘Mexican 
hat’-type interactions with I<< IDl”d will lead to an increase in the frequency of 
occurrence of metastable states (topological defects of the ‘butterfly’ type [26,27]), 
since regions in D with a large spatial separation will no longer he able to interact. 

5. Discussion 

We have shown that two seemingly unrelated processes, the dynamics of local order 
parameters in king spin neural networks with spatial structure on the one hand and 
the dynamics of learning in an unsupervised formulation of Kohonen’s model on the 
other, are in fact described by the same partial differential equation. This duality has 
some interesting consequences. Firstly, it allows one to apply to the problems associated 
with the dynamics of learning the techniques and intuition developed for describing 
and analysing the neural dynamics in attractor networks. The process of learning can 
now also he understood in terms of free energy minima and phase transitions in well 
known types of systems. Problems like finite size effects in attractor networks, for 
instance, turn out to be directly related to having only a finite number of input examples 
in the Kohonen model. Secondly, the duality shows that it might be interesting to 
study not only attractor networks in which the vectors e+ are microscopic system states 
(patterns), stored with Hebb’s rule, but also systems where these vectors are of a 
different kind and where both Hebbian and anti-Hebbian interactions are present. We 
have shown that attractor networks of the latter kind can even he used for creating 
topology conserving maps. 

A next step will be to study the fixed-point equations in more detail (which will 
be the subject of a forthcoming paper) and to find out to what extent this duality 
between neural dynamics and dynamics of learning might be a more general property 
of neural systems with Hebbian-type learning rules. 
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Appendix A. The evolution of linear order parameters 

In this section we derive flow equations for order parameters n, of the form 

nJs) =I: & p S j ,  

The vector n(s)- (n,(s), . . . , n,(s)) constitutes our macroscopic level of description. 
The support V, of a,, is defined as: V, = { ilwy) # O } .  In order to find deterministic 
equations we assume U!")  = O(l VJ') for all i, p (I V,,l is the number of elements in 
V,,). For simplicity we assume all I V,l to be of the same order in N. The probability 
P,(n) that the order parameters will have the value = (a,, . , . , a.) at time I is given 
by 

p m  = I : P , ( s ) w - f l ( s ) )  

Our purpose is to find a differential equation for P,(fl) using the microscopic master 
equation. This will be possible only if the local fields h j ( s )  depend on s only through 
the values of the order parameters: h j ( s )  = h , [ n ( s ) ] .  Using (2) one finds 

d 
- P,( fl) = 
d t  1 1  

W j (  s )p , (  s)( 8 (fl - n(s) + 2sj W j )  - s (a - fl( s))  

where w j = ( o j  ( 1 )  , ..  . , w ~ " ' ) .  The average value of any function @[a] is (@),= 

I d a  P,(fl)@[n]. Its time derivative is given by 

d =x 1 wj(s)P,(s)(@[n(s) -2sj~jl-@[fl(s)l)  
s i  

Inserting the unit operator I d f l  s(fl -fl(s))  and performing partial integrations gives 
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From this, since ( @ ) , = j d n  P,(n)@[n], we deduce 
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x P , ( n ) ( l - q ( n )  tanh(ph,[R])) 

(where IimN+- I V,l/ V = O( 1 ) ) .  For N + m we find deterministic evolution equations 
for the order parameters if IimN+- n / n =  0. In the latter case the solution of equation 
(A.l )  is given by P,(n)=ldn,P,(R.,)S(n-n(n,, t ) ) ,  in which n(n,, t )  is the 
solution of 

n(0) = n, (A.2) 
d -a,([)= lim a~:~)tanh(ph,[n(t)])-n,(t). d t  N - m  j 

Appendix B. Notation 

This appendix contains an overview of the notation introduced and a brief description 
of the main variables. 

Ising spin neural networks with spatial structure 

sE[ - l , l )N  microscopic spin state 
.$*ERN ( p = 1  . . . p  ) 
J ,  spin interactions 

stored vectors 

structure variables (indicating type of a given interaction 
J g  ) 
support of neuron i (contains lSil elements) 
microscopic state probability 
transition rates 
iocai aiignmeni fieids 
linear order parameters, hj(s) = h,[n(s)l 
support of 0, (contains I V,l elements) 
non-overlapping clusters of adjacent neurons 
overlap between SI 
coarse-grained spatial structure variables 
position vectors (continuum limit: A +x )  
local linear order parameter (overlaps) 
structure function (defining density and type of interac- 
tions) 

and .$*I ,, 
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Topology conserving maps 

hi E E, J$sj 
E, ( i = l  ... N )  

s E RP, Is1 = 1 

E 

f 
B 
nmf, n (x. Y )  
J,Sx, t )  

input vectors of the Kohonen model 
local fields in the Kohonen map (size map: N )  
sets of neural neighbours in Kohonen map 
learning rate 
monotonic nonlinear function 
nonlinearity parameter 
linear convolution on local fields in the map 
interaction strength at time f from input channel @ to 
position x in the map 

p dynamic fields (representing either local order para- 
meters or dynamic interactions) 
physical location of neurons 
spatial average 
integral operator n operating on functionf (eigenvalues 
of n :  A 4 Amax) 
strength of background inhibition in II 
randomly drawn vectors (probability distribution: p )  
covariance matrix (eigenvalues: c,. E [O, cma,]) 
Liapunov function (free energy) 
Hamiltonian 
entropy 
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